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Abstract—In the era of data-driven decision-making,
multisensor systems acquire complex, high-dimensional
streams capturing temporal dynamics, and multivariate time
series anomaly detection has become significantly relevant
in several application domains. Conventional methods rely-
ing on supervised and semi-supervised learning require
labeled data, which might not be available in various scenar-
ios. Conversely, noise and outliers present in real-world sen-
sor measurements negatively impact unsupervised methods.
Furthermore, several methods rely on black-box architec-
tures, which limit their use in safety-critical applications
where interpretability and explainability are often necessary.
To address these challenges, we propose a novel unsuper-
vised multivariate time series anomaly detection method that
exploits low-rank and sparse (LRS) decomposition combined
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with spectral detection. More specifically, we use augmented Lagrange multiplier (ALM)-based optimization with
eigenvalue soft thresholding for decomposition. Data points are projected onto a low-dimensional subspace, capturing

the underlying data structure and enabling robust anomaly

detection in noisy multisensor environments. Finally, the

effectiveness of the proposed approach is presented via performance comparison to several existing methods using
publicly available datasets collecting real-world sensor measurements from testbeds of water treatment systems.

Index Terms— Anomaly detection, low-rank approximation, multisensor systems, multivariate time series, sparse

decomposition, unsupervised learning.

[. INTRODUCTION

NOMALY detection plays a pivotal role in various sec-
tors, driven by the imperative to identify deviations from
normal behavior. In industrial contexts, such as power plants
and manufacturing facilities, early detection of anomalies can
prevent equipment failures, enhance the safety of operations,
and reduce downtime and maintenance costs [1], [2]. System
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safety and reliability are especially crucial nowadays in the
mobility sector, which is experiencing the growth of tech-
nologies for autonomous systems [3]. In cybersecurity, it is
essential to recognize threats such as network intrusions, thus
securing data integrity and mitigating risks [4], [5]. In health-
care, anomaly detection supports early diagnosis by identifying
unusual patient conditions, leading to timely interventions with
increased positive outcomes [6]. More generally, the continued
expansion and complexity of data, especially those gathered in
multisensor systems, continue to drive the need for advanced
anomaly detection techniques, highlighting their significance
in modern technological applications [2].

Recently, the adoption of deep neural networks (DNN5s) in
unsupervised anomaly detection (USAD) has seen remarkable
success [7], [8], with a variety of architectures being explored,
such as recurrent networks [9], [10], [11], [12], convolutional
networks [13], [14], autoencoders (AEs) [14], [15], generative
adversarial networks [16], [17], transformers [18], [19], and
graph neural networks [20]. These methods have demon-
strated significant advances in the management of complex
multivariate time series data, offering substantial perfor-
mance improvements over traditional techniques. However, the
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success of these models comes with challenges: their
black-box nature poses significant hurdles in critical applica-
tions where interpretability is crucial, as stakeholders must
understand and trust the models’ decisions; the substantial
computational complexity required for training and inference
poses practical limitations, making these models less viable for
real-time or on-device applications. Moreover, deep learning
models often struggle with generalization when faced with
unseen data, which can severely impact their reliability in
dynamic and unpredictable environments. This scenario under-
scores the ongoing need for simpler and more interpretable
methods that can be easily implemented in operational settings,
balancing performance with transparency and computational
efficiency.

One such approach involves principal component anal-
ysis (PCA), which operates under the assumption that
high-dimensional data can be embedded in a lower dimen-
sional subspace where normal instances and anomalies are
distinctly separable [21], [22], [23], [24]. PCA is appealing
because of its robust mathematical foundation and inherent
simplicity, which lead to computational efficiency and facili-
tate its confident use in high-stakes applications. However, the
simplicity of PCA also introduces vulnerabilities, particularly
in environments prone to data corruption, such as multisensor
systems where noise and outliers are common [25]. Improv-
ing the robustness of PCA-based anomaly detection methods
against data corruption and the ability to handle noise and
outliers without compromising simplicity and interpretability
is essential for ensuring reliable and accurate performance in
operational settings, especially in critical applications.

To tackle the limitations inherent in traditional PCA-based
anomaly detection, particularly its vulnerability to data cor-
ruption, we developed a novel approach grounded in low-rank
and sparse (LRS) decomposition. This method is based on the
assumption that high-dimensional data can typically be repre-
sented by low-dimensional latent variables and that anomalies
tend to be sparse [26], [27] Specifically, our contribution can
be summarized as follows.

1) We introduce a novel USAD method for multivari-
ate time series, using robust principal analysis to
enhance detection accuracy in monitoring of multisensor
systems.

2) Our approach leverages LRS decomposition techniques,
using augmented Lagrange multiplier (ALM)-based
optimization and eigenvalue soft thresholding, to effec-
tively minimize the impact of noisy sensor measure-
ments, potentially present during the training process,
on the anomaly detection process.

3) We present several results for performance evaluation,
comparing our method against other related anomaly
detection techniques using publicly available multisen-
sor datasets from testbeds of water treatment systems to
demonstrate its efficacy and robustness.

This article is organized into five sections. Section II
formulates the specific problem statement and describes the
mathematical approach developed for robust anomaly detec-
tion. Section III describes the multisensor datasets used in
this study, the evaluation metrics used for comparison, the
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Fig. 1. Data structure of the multisensor systems.

baseline methods, and provides some relevant implementation
details; the results are presented and discussed in Section IV.
Finally, Section V summarizes the work and suggests potential
directions for future research.

Notation—Vectors and matrices are denoted with bold
lower-case and bold upper-case letters, respectively; rank and
transpose operators are represented as rank(-) and (-)T, respec-
tively; while ||-||;, II-ll«, I-llF, and (-, -) denote the £;-norm,
the nuclear norm, the Frobenius norm, and the Frobenius inner
product, respectively; and [-] is the ceiling operator.

[I. METHODOLOGY
A. Problem Statement

We consider a multivariate time series with K components
generated by a multisensor system where x;[n] € R denotes
the value (e.g., the sensor measurement) of the kth univariate
component at discrete time n. The data vector x[n] =
(x1[n], x2[nl, ..., xx[n]DT € RX collects all the components at
discrete time n, and data matrix X = (x[1], x[2],...,x[N]) €
RE*N collects the data vectors related to N consecutive
discrete times. The overall data structure is shown in Fig. 1.

The objective of the proposed framework is to construct,
from a training data matrix (Xgan € R¥*V), a model G(-)
that characterizes the behavior of the multisensor system
under normal conditions and is capable of detecting deviations
from normal behavior. More specifically, we assume that no
guarantee is provided in relation to the absence of anomalies in
the training data, so the challenge is to characterize the normal
behavior of the multisensor system from unlabeled training
data which is potentially corrupted (e.g., in the presence of
noise and outliers). For model evaluation, we consider a test
data matrix (Xeq € RX¥*M with M « N) which includes
measurements from both normal and anomalous conditions.
In addition, a label vector y = (y1, ¥2, ..., yM)T e {0, M
paired with the test data matrix represents ground-truth infor-
mation, with y,, = 1 (resp. y,, = 0) denoting the presence
(resp. absence) of an anomaly at discrete time m.

Measurements (during both training and testing) are pre-
processed according to Z-score normalization, with mean and
standard deviation (for each univariate component) obtained
from the training data matrix. In the following, the data
matrices refer to the normalized versions.

B. LRS Decomposition

We propose a spectral unsupervised multivariate anomaly
detection method based on LRS decomposition. This approach
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Fig. 2. LRS-based anomaly detection approach: rotation of the principal
axis in the presence of anomalies and anomaly scoring using the
principal axis of the low-rank training matrix.

is based on the idea that the noisy training data generated
by measurements in multisensor systems can be separated
into two components: 1) a structured, low-rank component
representing normal behavior, and 2) a sparse component
capturing anomalies and/or noise. More specifically, a data
matrix X € R¥*V can be expressed via LRS decomposition
as

X=L+S§ (1)

where L € RX*¥ is a low-rank matrix representing the normal
sensor readings and S € RX*¥ is a sparse matrix representing
sensor anomalies and/or noise.

PCA can be applied to the data matrix to find the principal
directions in which the data vary the most. However, the
basic assumption of our framework is that in the presence
of anomalies, applying PCA to the low-rank matrix (L) is
more robust than applying it directly to the data matrix (X).
Fig. 2 provides a visual representation of this concept, where
the rotation of the principal axes in the presence of anomalies
is depicted.

C. LRS Nonconvex Objective and Convex Relaxation

The nonconvex formulation of the LRS seeks to directly
minimize the rank of the low-rank matrix (L) and maximize
the sparsity (i.e., minimize the number of nonzero elements)
of the sparse matrix (5). Hence, the optimization problem can
be expressed as [28], [29], [30]

r?isp rank(L) + [|Sllo, st L+S=X )

where minimizing the rank encourages the low-rank matrix
(L) to have fewer nonzero singular values and minimizing
the £o-norm encourages the sparse matrix (S) to have fewer
nonzero entries. Both the rank and the number of nonzero
entries are nonconvex functions, so both the terms lead to a
nonconvex optimization problem, which is NP-hard [31].

A surrogate convex relaxation approach can be used to make
the optimization problem tractable [32]. A convex relaxation

is used where the rank function is replaced by the nuclear
norm and the £yp-norm is replaced by the £;-norm, leading to
the following convex optimization problem [33]:

min L]l +AISl, st L+S=X 3)

where A > 0 is a regularization hyperparameter trading
off between the LRS components. The nuclear norm min-
imization indirectly impacts the rank by promoting smaller
singular values to be zero, thus achieving a low-rank matrix
without directly minimizing the nonconvex rank function.
The £;-norm minimization encourages sparsity by penalizing
nonzero entries, similar to the {p-norm, but in a convex
manner [34]. The optimal value for A is influenced by the
magnitude of outliers in the data and can be selected via cross-
validation. These relaxations lead to the problem formulation
in (3) that is convex and can be efficiently solved using
optimization techniques such as ALM. Alternative techniques
can be based on Moreau envelope alternating direction method
of multipliers (ADMM) [35]. The advantage of using ADMM
would be in terms of faster convergence and enhanced sta-
bility; however, it exhibits higher computational complexity
and parameter sensitivity. The ALM approach transforms the
constrained LRS optimization problem into an unconstrained
using Lagrange multipliers alongside an augmented penalty
term [36]. The augmented Lagrangian for the LRS optimiza-
tion problem is formulated as

L(L,S,Y,p)=|Lll,+ S|l + (Y, X —L—S)
0
+5||X—L—S||% 4)

where ¥ € RX*V is the matrix of Lagrange multipliers, and
p > 0 is a penalty parameter.

The ALM algorithm updates the matrices L, S, and Y iter-
atively to minimize the augmented Lagrangian £(L, S, Y, p).
More specifically, the low-rank matrix (L) and the sparse
matrix (S) are alternatively updated, and the algorithm uses
the soft-thresholding method for the singular values of the
low-rank matrix (L) and the entries of the sparse matrix (S),
enforcing the constraint based on the data matrix (X = L+ 5)
while adjusting the penalty parameter (o) incrementally [37].
The soft-thresholding method is based on the shrinking oper-
ator defined as

a—o, a>ao
Sa;a)={a+a, a<—« 5)
0, otherwise.

The update of the low-rank matrix (L) is performed
assuming the sparse matrix (S) and the matrix of Lagrange
multipliers (Y) fixed in the following minimization problem:

2
)
F

where soft-thresholding is applied to the singular values of the
following matrix P = X—S+p~'Y. Denoting P = UpXZpV},
the corresponding singular value decomposition (SVD), where
Up and V p are the orthogonal matrices and X p is a diagonal
matrix with the singular values (op1, ..., 0p min(k.n)) Of P on

1
mmOLm+qk—L—S+—Y
L 2 o
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Algorithm 1 LRS via ALM Optimization

Input: Training matrix X € R™*", A
Qutput: Approximate L, S
: Y0=0,p>1,z=0
2: while not converged do
3: U,x,V) <—svd(X—Sz+p;1YZ)
4 Lo < US(E; p;HV!
500 8. < S(X — Loy + p7 'Y Ao2 ")
6: Yoo <Y +p.(X—L.—8)
7 Pz4+1 <= Pz
8 z<z+1
9: end while

the main diagonal. The soft-thresholding method applies the
shrinking operator to the singular values (op ;)

Gpi=8(piip ), i=1,...,mnK N (7

and updates the low-rank matrix as L = U p)ipr,, where
¥ is the diagonal matrix with the updated singular values
(6 p,;) on the main diagonal.

The update of the sparse matrix (S) is performed assuming
the low-rank matrix (L) and the matrix of Lagrange multipliers
(Y) fixed in the following minimization problem:

2
) ®)
F

where soft-thresholding via the shrinking operator is directly
applied to the entries (R; ;) of the following matrix R = X —
L+p7'Y,ie.,

|
min()\llslh + QHX —L-S+-Y
S 2 0

Rij=SWRij; o™, i=1,...,K, j=1,...,N. (9

Finally, the matrix of Lagrange multipliers (Y) is updated
to enforce the constraint X = L + S as iterations proceed, via
the following updating rule:

Y=Y, +p(Y.—L-S) (10)

where the indices z and z + 1 refer to the current and next
iterations, respectively.

The ALM-based LRS decomposition is summarized in the
Algorithm 1.

D. LRS-Based Anomaly Detection

In the proposed spectral anomaly detection approach, a nor-
mal instance is expected to have low projection scores along
the principal components of the low-rank matrix, as they align
with the direction of maximum variance defined by the normal
data. Anomalies, on the other hand, will have higher projection
scores due to their deviation from the normal structure (e.g.,
dy and d, in Fig. 2). We use SVD to perform PCA on the
low-rank training matrix as L = UXVT where U € RK*K
and V € RV*V are the orthogonal matrices, and ¥ € RX*V ig
a nonnegative diagonal matrix containing the singular values
arranged in descending order (i.e., 0| > 02 > -+ > Omin(k,N))-

For anomaly detection purpose, we transform each test
data vector (x[m]) from the test data matrix (X ) using the
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TABLE |
SUMMARY OF DATASETS
Attributes Datasets
SWaT WADI
Entities 1 1
No. of channels 51 123

Average Train size 495,000 1,209,601
Average Test size 449,919 172,801

Anomaly rate 12.140% 5.99%

eigenvectors from the SVD of the low-rank training data as

M (11)

x[ml=Ux[m], m=1,...
where x[n] is the projected test data. The anomaly score is
calculated using the distance of the projected test data points
along the principal axes of the low-rank training data. For each
projected test vector (X[m]), the projection distance is given

by

(12)

where ¢ is the number of principal components used. The
projection distance is then scaled using min—-max scaling to
determine the corresponding anomaly score (s,,) as follows:

dm - dmin
- dmin

Sm =

(13)
dmax
where dpi, and dpax are computed from the score distribu-
tion. Finally, anomaly labeling (¥,,) is performed based on a
threshold-based rule applied to the anomaly score (s,,), i.e.,

NS
Ym = 0.

where the threshold (7) is selected from the training score
distribution according to the three-sigma rule.

A visualization of the steps involved is presented in Fig. 3.
The overall steps for the proposed method are summarized in
Algorithm 2.

Sm > T (14)

Sm < T
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Algorithm 2 LRS-Based Anomaly Detection
Input: Xi.in, Xiest, significance level o
Output: Anomaly labels for X

1: L+ S < Xyain

2: for each time series j in L do

30wy <y X Lyl
4 oy« XL - e
5o Lyli] < B
6: end for !
7
8
9

- UTVT « svd(L)
b X jeali] < R

¢ Xiest < UXtest .
10: for each test Vector Xiest 1N X et dO
1 dy <2 4 [’”]
12: end for
13: s, < %
14: T < X, ()
15: for each score s, in scores do

m=1,....M

16: if 5,, > © then
17: I <1
18: else

19: Ym <0
20: end if

21: end for

I1l. EXPERIMENTAL SETUP

A. Datasets

We conducted our experiments using two publicly available
multivariate datasets from testbeds of multisensor systems:
Secure Water Treatment (SWAT) [38], [39] and Water Dis-
tribution (WADI) [40]. More specifically, the SWaT dataset
is collected from a testbed that mimics the physical process
and control system of a real-world water treatment system.
It contains various network traffic, sensor, and actuator mea-
surements and spans 11 days of continuous operation (seven
days of normal operation and four days under both normal
and attack scenarios). The WADI dataset is collected from a
testbed that expands upon the SWaT system, forming a com-
prehensive and realistic network for water treatment, storage,
and distribution. It spans 16 days of operation (14 days of
normal operation and two days under attack scenarios).

Table I presents a summary of the attributes and statistics
of both the datasets and Fig. 4 depicts measurements from a
selection of sensors and actuators.

B. Evaluation Metrics

In our performance evaluations, we consider binary classifi-
cation metrics suitable for scenarios where anomalous samples
are much less frequent than normal ones, namely, scenarios
with imbalanced data. These metrics depend on the number of
correctly detected anomalies [true positives (TP)], the number
of erroneously detected anomalies (false positives (FP) or false
alarms), the number of correctly identified normal samples
[true negatives (TN)], and the number of erroneously identified
normal samples [false negatives (FN)]. By defining the true
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Fig. 4. Time series from selected sensors and actuators. (a) SWaT.
(b) WADI.

positive rate (TPR) and the false positive rate (FPR) as
TP FP

TPR = ——, = — (15)
TP + FN FP +TN
the precision (P), recall (R), and F1-score (F;) are given as
TP 2-P-R
=——, R=TPR, Fi=——+ (16)
TP + FP P+ R

while the receiver operating characteristic (ROC) is the curve
representing TPR versus FPR and is often used to evaluate
models at different threshold values. It is worth noting that the
F) score and the area under precision—recall curve (AUPRC)
are key performance metrics in anomaly detection given the
common data-imbalance problem. In addition, we consider the
area under the ROC curve (AUC).

C. Baseline Methods

To evaluate the performance of the proposed method,
we performed a comprehensive comparison with the following
state-of-the-art USAD algorithms.

1) Isolation forest (IF) [41], an anomaly detection approach
based on decision trees and random forests.

2) Gaussian mixture model (GMM) [42], anomaly
detection based on GMM and optimized using
expectation—maximization algorithm.

3) Empirical cumulative distribution functions (ECOD)
[43], a parameter-free and interpretable approach based
on empirical cdf functions.
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Fig. 5. Convergence of the LRS decomposition. (a) Convex formulation.
(b) Nonconvex formulation.

4) Copula-based outlier detection (COPOD) [44],
a parameter-free method based on empirical copula
models.

5) Multilayer perceptron AEs [10], [45], a neural net-
work architecture designed for reconstruction of latent
representation.

6) Variational AEs (VAEs) [46], another class of AEs that
represent latent space as a distribution.

7) Deep support vector data description (DeepSVDD) [47],
a neural network designed for a one-class classification
using a hypersphere.

8) Adversarially learned anomaly detection (ALAD) [48],
a generative adversarial-network-based approach based
on adversarially learned features.

9) USAD [49], a method via adversarially trained AEs.

10) Deep autoencoding GMM (DAGMM) [50], anomaly
detection approach that combines a compression net-
work and an estimation network.

We focused on computationally efficient methods that use both
statistical and DNNGs.!

D. Implementation Details and Tools

We used the TensorFlow deep learning framework for
training and evaluation and the Scikit-learn library for data
preprocessing. All the models are trained in the Google
Colaboratory Pro environment using NVIDIA T4 Tensor Core
GPU processors. We conducted a comprehensive evaluation
of the proposed approach using baseline implementation in

'An implementation in the PyOD and TODS Python library is used for
baselines.

—&- PCA

fe PC with 95% CEV (PCA)
—— LRS
19 e PC with 95% CEV (LRS)
0 10 20 30 40

PC

Fig. 6. Cumulative explained variance.

the PyOD Python library [51]. For the IF baseline, we used a
100-tree base estimator with a single feature to perform splits
at each node. For GMM, we use a two-component mixture
model with a full covariance matrix. The EM algorithm was
used to train the model with 100 iterations. The AE consists of
a three-layer encoder and a three-layer decoder. The number
of neurons per hidden layer consists of [64, 32, 16, 32, 64],
respectively. Therefore, the input vector is represented in a
16-D latent space before reconstruction. An ReLU activation
function is used for hidden layers, and Sigmoid activation is
used for the output layer. We train the model using mean
square error loss using the Adam optimizer for 100 epochs
(with 64 samples per gradient update). A dropout rate of
0.2 and [ — 2 regularization regularization strength of 0.1 used
to avoid overfitting. In addition, we apply standardization to
the data for faster convergence. For VAE, a similar architecture
to AE is used. However, the VAE is trained using the sum of
mean square error (reconstruction loss) and Kullback-Leibler
divergence (KL loss). For DeepSVDD, a similar activation
function, batch size, dropout rate, regularization, and standard-
ization are applied. The hidden layer consists of neurons with
64, 32, and a neuron number equal to the dimension of the
output size.

For the proposed method, we used a penalty on sparse
errors A = 0.1 and update criterion parameter p = 107,
The algorithm runs for 100 maximum number of iterations
with a tolerance of 1073. Various amount of outliers were
injected into the training data matrix (X ). The total number
of anomalies is denoted by N, = [N - r], where r is
the predefined anomaly rate, and the discrete time indices
for the anomalies are uniformly generated. The amplitude
values for the anomalies are generated independently for each
sensor and drawn from a uniform distribution (ranging up to
three times the maximum value of that sensor) and injected
into the training data matrix (Xqin) by replacing the sensor
measurements

IV. NUMERICAL RESULTS AND DISCUSSION
Several experiments have been performed to assess the
validity of the proposed algorithm and the related impact on
robust anomaly detection for multisensor systems.
Firs, we explored the convergence of the LRS decomposi-
tion for both (surrogate) convex and nonconvex formulations
via the SWaT and WADI datasets. Fig. 5(a) shows the
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low-rank matrix (||L||,) and the £;-norm of the sparse matrix
(IS1I1) for both the SWAT and WADI datasets. Fig. 5(b) shows
the convergence of LRS decomposition by considering the
nonconvex parameters rank(L) and || S|o for both the SWAT
and WADI datasets.

The interaction among the measurements from multiple
sensors and the related impact of noise and outliers was
considered via the cumulative explained variance (CEV). More
specifically, the CEV for k components (¢;) is defined as

Zf:l a’
“ ZZN:I o i2.
Fig. 6 shows the CEV versus the number of principal com-
ponents for both the standard PCA and LRS methods.
In particular, the LRS approach attains a CEV level equal
to 95% for the SWAT (resp. WADI) dataset with 9 (resp.
26) components, with significantly fewer principal components
compared with standard PCA, which requires 11 (resp. 44)
components. The efficient variance accumulation with fewer
components highlights the robustness of the LRS approach in
dealing with noise and outliers in the training data, translating
into a reduction of false positives during operation. Further-
more, the reduction in the required number of components
underscores the potential of LRS to improve computational
efficiency.

Fig. 7 presents the loadings for the first principal component
(PC-1) derived from the standard PCA and LRS methods
for the SWAT dataset. The loadings provide the relative
contribution of the original features to the most informative
principal component. Apparently, the loading spans positive
and negative values in both the approaches, indicating a mix
of direct and inverse relationships between the original features
and the principal component. It is worth emphasizing that
fewer original features contribute to the principal component
in the case of LRS. The wide range of loadings also points to
the vulnerability of the standard PCA to outliers. Differently,
the loadings of the LRS approach present a distinct pattern
with a higher concentration of loadings among fewer features.
This behavior suggests a more targeted representation of the
data structure, indicating that LRS prioritizes and accentuates
features that are crucial to the dynamics of the underlying
system. This selective emphasis is further demonstrated in the
low-dimensional visualization depicted in Fig. 8.

a7

20
PC-2 (20.7%) -0 -10 PC-1 (40.6%)
(b)
Fig. 8. Low-dimensional visualization of the scores. (a) SWaT.
(b) WADI.

A. Performance Evaluation

Fig. 9 shows the ROC curves for both the standard PCA and
LRS methods applied on both the SWaT and WADI datasets
with different numbers of PCs. LRA clearly outperforms the
standard PCA approach in the case of the WADI dataset, while
the improvement is reduced with the SWaT dataset.

Fig. 10 makes a similar comparison in terms of F) score,
AUC, and AUPRC. Again, the benefit of the LRS approach
over the standard PCA is consistent and significant in the case
of the WADI dataset, while less significant with the SWaT
dataset. One possible explanation for the behavior with the
SWaT dataset is the relative high number of binary features in
the dataset which might reduce the effectiveness of low-rank
description with respect to the case of real-valued features.

B. Sensitivity Analysis

We explored the impact on the performance of the proposed
algorithm of the anomaly rate (r) in the training data. Outliers
were introduced into the training datasets at various anomaly
rates (r € {0.01,0.05,0.1,0.2}) and the corresponding
F-score, AUC, and AUPRC computed and shown in Figs. 11
and 12 for the SWAT and WADI datasets, respectively. The
performance degradation becomes more relevant with the
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Fig. 10. Comparison of different approaches on two datasets.

anomaly rate, which confirms that noisy and/or corrupted
measurements in the training dataset pose critical challenges to
anomaly detection systems. Notably, the proposed LRS-based
method demonstrates substantial robustness with respect to
those issues, especially in the presence of large anomaly
rate.

C. Performance Comparison With Baselines

Table II presents a comprehensive performance comparison
with the selected baseline anomaly detection methods. Here we
refer to the LRS method with 15 principal components applied
to the SWaT dataset. ECOD and COPOD show competitive
performance, with COPOD slightly outperforming ECOD in

PC PC

Fig. 11. Performance for noisy measurements on the SWaT dataset.

terms of F|-score and PRC. IF shows reasonable precision but
low recall and PRC. GMM and AE show higher recall but low
precision, leading to the lowest Fj-score among the baseline
methods. DeepSVDD shows a balance between precision and
recall, achieving the highest Fj-score. The proposed method
outperformed the majority of the baseline methods in all
the metrics, particularly in recall, Fj-score, AUC, and PRC
scores.

D. Computational Complexity of LRS

The computational complexity of LRS decomposition via
ALM optimization is primarily dominated by the SVD step.
Each iteration of the algorithm involves performing SVD
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TABLE Ill
COMPARISON OF TRAINING AND INFERENCE TIMES
ON THE SWAT DATASET

Fig. 12. Performance for noisy measurements on the WADI dataset.
TABLE Il
PERFORMANCE RESULTS ON THE SWAT DATASET

Methods P R F1 AUC  AUPRC
ECOD [43] 0.9764 05969 0.7409 0.8615  0.7571
COPOD [44] 0.9321 0.6240 0.7475 0.8600  0.7585
IF [41] 0.8510  0.5773  0.6880 0.8359  0.5033
GMM [42] 04107  0.6908 0.5152 0.7562  0.3757
AE [45] 0.9932 0.6234 0.7660 0.8188  0.7267
VAE [46] 0.9932 0.6234 0.7660 0.8187  0.7267
DeepSVDD [47] | 09735 0.7060 0.8185 0.8499  0.7555
ALAD [48] 0.1221 09986 0.2176 02122  0.0884
USAD [49] 0.2018 0.8416 0.3256  0.8045  0.7030
DAGMM [50] 0.2031  0.8157 0.3253  0.8017  0.6917
LRS 09446 0.7137 0.8131  0.8799 0.7861

on a matrix of size K x N, which has a complexity of
O (min(K N2, K*N)) based on divide and conquer algorithm.
Assuming K < N, this simplifies to O(KN?). Other oper-
ations within each iteration, such as soft-thresholding and
matrix updates, have lower complexities and do not signif-
icantly impact the overall computation time. Therefore, the
total computational complexity of the LRS decomposition is
O(T - KN?), where T is the number of iterations required
for convergence. This analysis highlights that the SVD step is
the critical factor influencing the algorithm’s efficiency. We fix
T = 10 and analyze the time complexity. Table III presents
the training and inference times’ baselines and LRS. While the
training time is higher compared with simpler models such as
IF, it is significantly lower than deep learning models such
as DeepSVDD and ALAD. The inference time of LRS is
also low, making it a viable option for practical applications
requiring a balance between training efficiency and inference
performance.

Model Average Train time (sec)  Average Test time (sec)
ECOD 4.2746 7.8792
COPOD 4.1670 8.4628
IF 0.3591 0.1560
GMM 4.9242 0.4124
AE 8.6163 0.6625
VAE 84.4780 0.4630
DeepSVDD 100.3312 0.1415
ALAD 405.3361 1.7606
USAD 81.0371 4.4837
DAGMM 69.3916 3.2364
LRS 30.1502 1.1357

V. CONCLUSION AND FUTURE WORK

In this study, we introduced a novel, robust USAD method
based on LRS decomposition for multivariate time series data
generated by multisensor systems. The proposed approach
leverages mathematical principles to provide a robust and
interpretable solution to detect anomalies in complex, high-
dimensional data streams from sensors that may be affected
by noise and outliers. The main contributions are: enhanced
dimensionality reduction through robust PCA and related
improved computational efficiency, increased resilience to
data noise during the training phase, and related increased
reliability of anomaly detection during operation. Finally,
comparative evaluations with the existing baseline methods on
public datasets demonstrated the effectiveness and practical
utility of the proposed approach. Despite LRS providing a
robust anomaly detection approach, several research directions
remain for future exploration, such as adapting the LRS frame-
work for real-time operations of complex multisensor systems,
integrating it with deep learning, and investigating alternative
decomposition and optimization techniques. In addition, future
work could explore the potential of graph signal processing
and graph neural networks for multivariate time series anomaly
detection, leveraging their capabilities in capturing complex
dependencies and structures in data. It is important to note
that the proposed anomaly detection method is currently most
effective for point anomalies. Future research could extend
the framework to address subsequence anomalies and con-
textual anomalies. Furthermore, while our method provides a
robust foundation, we recognize the limitations of the convex
relaxation approach in LRS decomposition, specifically its
tendency to underestimate sparsity and rank. Future work
should focus on integrating advanced nonconvex optimization
techniques, such as iteratively reweighted methods and special
norms, to overcome these limitations and improve the accuracy
and robustness of anomaly detection. In addition, the use
of the Moreau envelope ADMM algorithm could enhance
convergence speed and stability of the decomposition process.
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